ballet.eng.external.skits module¶
-
class
ballet.eng.external.skits.AutoregressiveTransformer(num_lags=5, pred_stride=1)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin
-
class
ballet.eng.external.skits.DifferenceTransformer(period=1)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin-
needs_refit= True¶
-
-
class
ballet.eng.external.skits.FourierTransformer(period=10, max_order=10, step_size=1)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin
-
class
ballet.eng.external.skits.HorizonTransformer(horizon=2)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin-
fit_transform(X, y=None)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns
X_new – Transformed array.
- Return type
ndarray array of shape (n_samples, n_features_new)
-
needs_refit= True¶
-
y_only= True¶
-
-
class
ballet.eng.external.skits.IntegratedTransformer(num_lags=1, pred_stride=1)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin
-
class
ballet.eng.external.skits.LogTransformer[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin-
needs_refit= False¶
-
-
class
ballet.eng.external.skits.ReversibleImputer(y_only=False)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin-
needs_refit= True¶
-
-
class
ballet.eng.external.skits.RollingMeanTransformer(window=5)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixin