ballet.eng.external.featuretools module¶
-
class
ballet.eng.external.featuretools.
DFSTransformer
(target_entity=None, agg_primitives=None, trans_primitives=None, allowed_paths=None, max_depth=2, ignore_entities=None, ignore_variables=None, seed_features=None, drop_contains=None, drop_exact=None, where_primitives=None, max_features=- 1, verbose=False)[source]¶ Bases:
sklearn.base.TransformerMixin
Transformer using Scikit-Learn interface for Pipeline uses.
-
fit
(X, y=None)[source]¶ Wrapper for DFS
Calculates a list of features given a dictionary of entities and a list of relationships. Alternatively, an EntitySet can be passed instead of the entities and relationships.
- Parameters
X – (ft.Entityset or tuple): Entityset to calculate features on. If a tuple is passed it can take one of these forms: (entityset, cutoff_time_dataframe), (entities, relationships), or ((entities, relationships), cutoff_time_dataframe)
y – (iterable): Training targets
See also
synthesis.dfs()
-
transform
(X)[source]¶ Wrapper for calculate_feature_matrix
Calculates a feature matrix for a the given input data and calculation times.
- Parameters
X – (ft.Entityset or tuple): Entityset to calculate features on. If a tuple is passed it can take one of these forms: (entityset, cutoff_time_dataframe), (entities, relationships), or ((entities, relationships), cutoff_time_dataframe)
See also
computational_backends.calculate_feature_matrix()
-