ballet.pipeline module¶
-
class
ballet.pipeline.EngineerFeaturesResult(X_df, features, pipeline, X, y_df, encoder, y)[source]¶ Bases:
tuple-
X: numpy.ndarray¶ Alias for field number 3
-
X_df: pandas.core.frame.DataFrame¶ Alias for field number 0
-
encoder: ballet.eng.base.BaseTransformer¶ Alias for field number 5
-
features: List[ballet.feature.Feature]¶ Alias for field number 1
-
pipeline: ballet.pipeline.FeatureEngineeringPipeline¶ Alias for field number 2
-
y: numpy.ndarray¶ Alias for field number 6
-
y_df: pandas.core.frame.DataFrame¶ Alias for field number 4
-
-
class
ballet.pipeline.FeatureEngineeringPipeline(features)[source]¶ Bases:
sklearn_pandas.dataframe_mapper.DataFrameMapperFeature engineering pipeline
-
get_names(columns, transformer, x, alias=None)[source]¶ Return verbose names for the transformed columns.
This extends the behavior of DataFrameMapper to allow
aliasto rename all of the output columns, rather than just providing a common base. It also allowscolumnsto be a callable that supports selection by callable of the data frame.
-
-
ballet.pipeline.make_engineer_features(pipeline, encoder, load_data)[source]¶ - Return type
Callable[[DataFrame,DataFrame],EngineerFeaturesResult]