ballet.validation.gfssf module¶
-
class
ballet.validation.gfssf.GFSSFIterationInfo(i, n_samples, candidate_feature, candidate_cols, candidate_cmi, omitted_feature, omitted_cols, omitted_cmi, statistic, threshold, delta)[source]¶ Bases:
object-
candidate_cmi: float¶
-
candidate_cols: int¶
-
candidate_feature: ballet.feature.Feature¶
-
delta: float¶
-
i: int¶
-
n_samples: int¶
-
omitted_cmi: float¶
-
omitted_cols: int¶
-
omitted_feature: ballet.feature.Feature¶
-
statistic: float¶
-
threshold: float¶
-
-
class
ballet.validation.gfssf.GFSSFPerformanceEvaluator(*args, lmbda_1=0.0, lmbda_2=0.0, lambda_1_adjustment=64, lambda_2_adjustment=64)[source]¶ Bases:
ballet.validation.base.FeaturePerformanceEvaluatorA feature performance evaluator that uses a modified version of GFSSF[1]
-
lmbda_1¶ GFSSF parameter used to calculate the information threshold. Default is a function of the entropy of y.
-
lmbda_2¶ GFSSF parameter used to calculate the information threshold. Default is a function of the entropy of y.
-
lambda_1_adjustment¶ Adjustment to estimated entropy used to calculate lmbda_1.
-
lambda_2_adjustment¶ Adjustment to estimated entropy used to calculate lmbda_2.
References
- [1] H. Li, X. Wu, Z. Li and W. Ding, “Group Feature Selection
with Streaming Features,” 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, 2013, pp. 1109-1114. doi: 10.1109/ICDM.2013.137
-