Source code for sklearn.preprocessing._polynomial

"""
This file contains preprocessing tools based on polynomials.
"""
import collections
import numbers
from itertools import chain, combinations
from itertools import combinations_with_replacement as combinations_w_r

import numpy as np
from scipy import sparse
from scipy.interpolate import BSpline
from scipy.special import comb

from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array
from ..utils.deprecation import deprecated
from ..utils.fixes import linspace
from ..utils.validation import check_is_fitted, FLOAT_DTYPES, _check_sample_weight
from ..utils.validation import _check_feature_names_in
from ..utils.stats import _weighted_percentile

from ._csr_polynomial_expansion import _csr_polynomial_expansion


__all__ = [
    "PolynomialFeatures",
    "SplineTransformer",
]


[docs]class PolynomialFeatures(TransformerMixin, BaseEstimator): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Read more in the :ref:`User Guide <polynomial_features>`. Parameters ---------- degree : int or tuple (min_degree, max_degree), default=2 If a single int is given, it specifies the maximal degree of the polynomial features. If a tuple `(min_degree, max_degree)` is passed, then `min_degree` is the minimum and `max_degree` is the maximum polynomial degree of the generated features. Note that `min_degree=0` and `min_degree=1` are equivalent as outputting the degree zero term is determined by `include_bias`. interaction_only : bool, default=False If `True`, only interaction features are produced: features that are products of at most `degree` *distinct* input features, i.e. terms with power of 2 or higher of the same input feature are excluded: - included: `x[0]`, `x[1]`, `x[0] * x[1]`, etc. - excluded: `x[0] ** 2`, `x[0] ** 2 * x[1]`, etc. include_bias : bool, default=True If `True` (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). order : {'C', 'F'}, default='C' Order of output array in the dense case. `'F'` order is faster to compute, but may slow down subsequent estimators. .. versionadded:: 0.21 Attributes ---------- powers_ : ndarray of shape (`n_output_features_`, `n_features_in_`) `powers_[i, j]` is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. .. deprecated:: 1.0 This attribute is deprecated in 1.0 and will be removed in 1.2. Refer to `n_features_in_` instead. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. See Also -------- SplineTransformer : Transformer that generates univariate B-spline bases for features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>` Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import PolynomialFeatures >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0., 0., 1.], [ 1., 2., 3., 4., 6., 9.], [ 1., 4., 5., 16., 20., 25.]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0.], [ 1., 2., 3., 6.], [ 1., 4., 5., 20.]]) """ def __init__( self, degree=2, *, interaction_only=False, include_bias=True, order="C" ): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias self.order = order @staticmethod def _combinations( n_features, min_degree, max_degree, interaction_only, include_bias ): comb = combinations if interaction_only else combinations_w_r start = max(1, min_degree) iter = chain.from_iterable( comb(range(n_features), i) for i in range(start, max_degree + 1) ) if include_bias: iter = chain(comb(range(n_features), 0), iter) return iter @staticmethod def _num_combinations( n_features, min_degree, max_degree, interaction_only, include_bias ): """Calculate number of terms in polynomial expansion This should be equivalent to counting the number of terms returned by _combinations(...) but much faster. """ if interaction_only: combinations = sum( [ comb(n_features, i, exact=True) for i in range(max(1, min_degree), min(max_degree, n_features) + 1) ] ) else: combinations = comb(n_features + max_degree, max_degree, exact=True) - 1 if min_degree > 0: d = min_degree - 1 combinations -= comb(n_features + d, d, exact=True) - 1 if include_bias: combinations += 1 return combinations @property def powers_(self): """Exponent for each of the inputs in the output.""" check_is_fitted(self) combinations = self._combinations( n_features=self.n_features_in_, min_degree=self._min_degree, max_degree=self._max_degree, interaction_only=self.interaction_only, include_bias=self.include_bias, ) return np.vstack( [np.bincount(c, minlength=self.n_features_in_) for c in combinations] )
[docs] @deprecated( "get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead." ) def get_feature_names(self, input_features=None): """Return feature names for output features. Parameters ---------- input_features : list of str of shape (n_features,), default=None String names for input features if available. By default, "x0", "x1", ... "xn_features" is used. Returns ------- output_feature_names : list of str of shape (n_output_features,) Transformed feature names. """ powers = self.powers_ if input_features is None: input_features = ["x%d" % i for i in range(powers.shape[1])] feature_names = [] for row in powers: inds = np.where(row)[0] if len(inds): name = " ".join( "%s^%d" % (input_features[ind], exp) if exp != 1 else input_features[ind] for ind, exp in zip(inds, row[inds]) ) else: name = "1" feature_names.append(name) return feature_names
[docs] def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features is None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_)]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ powers = self.powers_ input_features = _check_feature_names_in(self, input_features) feature_names = [] for row in powers: inds = np.where(row)[0] if len(inds): name = " ".join( "%s^%d" % (input_features[ind], exp) if exp != 1 else input_features[ind] for ind, exp in zip(inds, row[inds]) ) else: name = "1" feature_names.append(name) return np.asarray(feature_names, dtype=object)
[docs] def fit(self, X, y=None): """ Compute number of output features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object Fitted transformer. """ _, n_features = self._validate_data(X, accept_sparse=True).shape if isinstance(self.degree, numbers.Integral): if self.degree < 0: raise ValueError( f"degree must be a non-negative integer, got {self.degree}." ) self._min_degree = 0 self._max_degree = self.degree elif ( isinstance(self.degree, collections.abc.Iterable) and len(self.degree) == 2 ): self._min_degree, self._max_degree = self.degree if not ( isinstance(self._min_degree, numbers.Integral) and isinstance(self._max_degree, numbers.Integral) and self._min_degree >= 0 and self._min_degree <= self._max_degree ): raise ValueError( "degree=(min_degree, max_degree) must " "be non-negative integers that fulfil " "min_degree <= max_degree, got " f"{self.degree}." ) else: raise ValueError( "degree must be a non-negative int or tuple " "(min_degree, max_degree), got " f"{self.degree}." ) self.n_output_features_ = self._num_combinations( n_features=n_features, min_degree=self._min_degree, max_degree=self._max_degree, interaction_only=self.interaction_only, include_bias=self.include_bias, ) # We also record the number of output features for # _max_degree = 0 self._n_out_full = self._num_combinations( n_features=n_features, min_degree=0, max_degree=self._max_degree, interaction_only=self.interaction_only, include_bias=self.include_bias, ) return self
[docs] def transform(self, X): """Transform data to polynomial features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to transform, row by row. Prefer CSR over CSC for sparse input (for speed), but CSC is required if the degree is 4 or higher. If the degree is less than 4 and the input format is CSC, it will be converted to CSR, have its polynomial features generated, then converted back to CSC. If the degree is 2 or 3, the method described in "Leveraging Sparsity to Speed Up Polynomial Feature Expansions of CSR Matrices Using K-Simplex Numbers" by Andrew Nystrom and John Hughes is used, which is much faster than the method used on CSC input. For this reason, a CSC input will be converted to CSR, and the output will be converted back to CSC prior to being returned, hence the preference of CSR. Returns ------- XP : {ndarray, sparse matrix} of shape (n_samples, NP) The matrix of features, where `NP` is the number of polynomial features generated from the combination of inputs. If a sparse matrix is provided, it will be converted into a sparse `csr_matrix`. """ check_is_fitted(self) X = self._validate_data( X, order="F", dtype=FLOAT_DTYPES, reset=False, accept_sparse=("csr", "csc") ) n_samples, n_features = X.shape if sparse.isspmatrix_csr(X): if self._max_degree > 3: return self.transform(X.tocsc()).tocsr() to_stack = [] if self.include_bias: to_stack.append( sparse.csc_matrix(np.ones(shape=(n_samples, 1), dtype=X.dtype)) ) if self._min_degree <= 1: to_stack.append(X) for deg in range(max(2, self._min_degree), self._max_degree + 1): Xp_next = _csr_polynomial_expansion( X.data, X.indices, X.indptr, X.shape[1], self.interaction_only, deg ) if Xp_next is None: break to_stack.append(Xp_next) if len(to_stack) == 0: # edge case: deal with empty matrix XP = sparse.csr_matrix((n_samples, 0), dtype=X.dtype) else: XP = sparse.hstack(to_stack, format="csr") elif sparse.isspmatrix_csc(X) and self._max_degree < 4: return self.transform(X.tocsr()).tocsc() elif sparse.isspmatrix(X): combinations = self._combinations( n_features=n_features, min_degree=self._min_degree, max_degree=self._max_degree, interaction_only=self.interaction_only, include_bias=self.include_bias, ) columns = [] for combi in combinations: if combi: out_col = 1 for col_idx in combi: out_col = X[:, col_idx].multiply(out_col) columns.append(out_col) else: bias = sparse.csc_matrix(np.ones((X.shape[0], 1))) columns.append(bias) XP = sparse.hstack(columns, dtype=X.dtype).tocsc() else: # Do as if _min_degree = 0 and cut down array after the # computation, i.e. use _n_out_full instead of n_output_features_. XP = np.empty( shape=(n_samples, self._n_out_full), dtype=X.dtype, order=self.order ) # What follows is a faster implementation of: # for i, comb in enumerate(combinations): # XP[:, i] = X[:, comb].prod(1) # This implementation uses two optimisations. # First one is broadcasting, # multiply ([X1, ..., Xn], X1) -> [X1 X1, ..., Xn X1] # multiply ([X2, ..., Xn], X2) -> [X2 X2, ..., Xn X2] # ... # multiply ([X[:, start:end], X[:, start]) -> ... # Second optimisation happens for degrees >= 3. # Xi^3 is computed reusing previous computation: # Xi^3 = Xi^2 * Xi. # degree 0 term if self.include_bias: XP[:, 0] = 1 current_col = 1 else: current_col = 0 # degree 1 term XP[:, current_col : current_col + n_features] = X index = list(range(current_col, current_col + n_features)) current_col += n_features index.append(current_col) # loop over degree >= 2 terms for _ in range(2, self._max_degree + 1): new_index = [] end = index[-1] for feature_idx in range(n_features): start = index[feature_idx] new_index.append(current_col) if self.interaction_only: start += index[feature_idx + 1] - index[feature_idx] next_col = current_col + end - start if next_col <= current_col: break # XP[:, start:end] are terms of degree d - 1 # that exclude feature #feature_idx. np.multiply( XP[:, start:end], X[:, feature_idx : feature_idx + 1], out=XP[:, current_col:next_col], casting="no", ) current_col = next_col new_index.append(current_col) index = new_index if self._min_degree > 1: n_XP, n_Xout = self._n_out_full, self.n_output_features_ if self.include_bias: Xout = np.empty( shape=(n_samples, n_Xout), dtype=XP.dtype, order=self.order ) Xout[:, 0] = 1 Xout[:, 1:] = XP[:, n_XP - n_Xout + 1 :] else: Xout = XP[:, n_XP - n_Xout :].copy() XP = Xout return XP
# TODO: Remove in 1.2 # mypy error: Decorated property not supported @deprecated( # type: ignore "The attribute `n_input_features_` was " "deprecated in version 1.0 and will be removed in 1.2." ) @property def n_input_features_(self): return self.n_features_in_
# TODO: # - sparse support (either scipy or own cython solution)? class SplineTransformer(TransformerMixin, BaseEstimator): """Generate univariate B-spline bases for features. Generate a new feature matrix consisting of `n_splines=n_knots + degree - 1` (`n_knots - 1` for `extrapolation="periodic"`) spline basis functions (B-splines) of polynomial order=`degree` for each feature. Read more in the :ref:`User Guide <spline_transformer>`. .. versionadded:: 1.0 Parameters ---------- n_knots : int, default=5 Number of knots of the splines if `knots` equals one of {'uniform', 'quantile'}. Must be larger or equal 2. Ignored if `knots` is array-like. degree : int, default=3 The polynomial degree of the spline basis. Must be a non-negative integer. knots : {'uniform', 'quantile'} or array-like of shape \ (n_knots, n_features), default='uniform' Set knot positions such that first knot <= features <= last knot. - If 'uniform', `n_knots` number of knots are distributed uniformly from min to max values of the features. - If 'quantile', they are distributed uniformly along the quantiles of the features. - If an array-like is given, it directly specifies the sorted knot positions including the boundary knots. Note that, internally, `degree` number of knots are added before the first knot, the same after the last knot. extrapolation : {'error', 'constant', 'linear', 'continue', 'periodic'}, \ default='constant' If 'error', values outside the min and max values of the training features raises a `ValueError`. If 'constant', the value of the splines at minimum and maximum value of the features is used as constant extrapolation. If 'linear', a linear extrapolation is used. If 'continue', the splines are extrapolated as is, i.e. option `extrapolate=True` in :class:`scipy.interpolate.BSpline`. If 'periodic', periodic splines with a periodicity equal to the distance between the first and last knot are used. Periodic splines enforce equal function values and derivatives at the first and last knot. For example, this makes it possible to avoid introducing an arbitrary jump between Dec 31st and Jan 1st in spline features derived from a naturally periodic "day-of-year" input feature. In this case it is recommended to manually set the knot values to control the period. include_bias : bool, default=True If True (default), then the last spline element inside the data range of a feature is dropped. As B-splines sum to one over the spline basis functions for each data point, they implicitly include a bias term, i.e. a column of ones. It acts as an intercept term in a linear models. order : {'C', 'F'}, default='C' Order of output array. 'F' order is faster to compute, but may slow down subsequent estimators. Attributes ---------- bsplines_ : list of shape (n_features,) List of BSplines objects, one for each feature. n_features_in_ : int The total number of input features. feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_features_out_ : int The total number of output features, which is computed as `n_features * n_splines`, where `n_splines` is the number of bases elements of the B-splines, `n_knots + degree - 1` for non-periodic splines and `n_knots - 1` for periodic ones. If `include_bias=False`, then it is only `n_features * (n_splines - 1)`. See Also -------- KBinsDiscretizer : Transformer that bins continuous data into intervals. PolynomialFeatures : Transformer that generates polynomial and interaction features. Notes ----- High degrees and a high number of knots can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import SplineTransformer >>> X = np.arange(6).reshape(6, 1) >>> spline = SplineTransformer(degree=2, n_knots=3) >>> spline.fit_transform(X) array([[0.5 , 0.5 , 0. , 0. ], [0.18, 0.74, 0.08, 0. ], [0.02, 0.66, 0.32, 0. ], [0. , 0.32, 0.66, 0.02], [0. , 0.08, 0.74, 0.18], [0. , 0. , 0.5 , 0.5 ]]) """ def __init__( self, n_knots=5, degree=3, *, knots="uniform", extrapolation="constant", include_bias=True, order="C", ): self.n_knots = n_knots self.degree = degree self.knots = knots self.extrapolation = extrapolation self.include_bias = include_bias self.order = order @staticmethod def _get_base_knot_positions(X, n_knots=10, knots="uniform", sample_weight=None): """Calculate base knot positions. Base knots such that first knot <= feature <= last knot. For the B-spline construction with scipy.interpolate.BSpline, 2*degree knots beyond the base interval are added. Returns ------- knots : ndarray of shape (n_knots, n_features), dtype=np.float64 Knot positions (points) of base interval. """ if knots == "quantile": percentiles = 100 * np.linspace( start=0, stop=1, num=n_knots, dtype=np.float64 ) if sample_weight is None: knots = np.percentile(X, percentiles, axis=0) else: knots = np.array( [ _weighted_percentile(X, sample_weight, percentile) for percentile in percentiles ] ) else: # knots == 'uniform': # Note that the variable `knots` has already been validated and # `else` is therefore safe. # Disregard observations with zero weight. mask = slice(None, None, 1) if sample_weight is None else sample_weight > 0 x_min = np.amin(X[mask], axis=0) x_max = np.amax(X[mask], axis=0) knots = linspace( start=x_min, stop=x_max, num=n_knots, endpoint=True, dtype=np.float64, ) return knots @deprecated( "get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead." ) def get_feature_names(self, input_features=None): """Return feature names for output features. Parameters ---------- input_features : list of str of shape (n_features,), default=None String names for input features if available. By default, "x0", "x1", ... "xn_features" is used. Returns ------- output_feature_names : list of str of shape (n_output_features,) Transformed feature names. """ n_splines = self.bsplines_[0].c.shape[0] if input_features is None: input_features = ["x%d" % i for i in range(self.n_features_in_)] feature_names = [] for i in range(self.n_features_in_): for j in range(n_splines - 1 + self.include_bias): feature_names.append(f"{input_features[i]}_sp_{j}") return feature_names def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_)]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ n_splines = self.bsplines_[0].c.shape[0] input_features = _check_feature_names_in(self, input_features) feature_names = [] for i in range(self.n_features_in_): for j in range(n_splines - 1 + self.include_bias): feature_names.append(f"{input_features[i]}_sp_{j}") return np.asarray(feature_names, dtype=object) def fit(self, X, y=None, sample_weight=None): """Compute knot positions of splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data. y : None Ignored. sample_weight : array-like of shape (n_samples,), default = None Individual weights for each sample. Used to calculate quantiles if `knots="quantile"`. For `knots="uniform"`, zero weighted observations are ignored for finding the min and max of `X`. Returns ------- self : object Fitted transformer. """ X = self._validate_data( X, reset=True, accept_sparse=False, ensure_min_samples=2, ensure_2d=True, ) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) _, n_features = X.shape if not (isinstance(self.degree, numbers.Integral) and self.degree >= 0): raise ValueError( f"degree must be a non-negative integer, got {self.degree}." ) if isinstance(self.knots, str) and self.knots in [ "uniform", "quantile", ]: if not (isinstance(self.n_knots, numbers.Integral) and self.n_knots >= 2): raise ValueError( f"n_knots must be a positive integer >= 2, got: {self.n_knots}" ) base_knots = self._get_base_knot_positions( X, n_knots=self.n_knots, knots=self.knots, sample_weight=sample_weight ) else: base_knots = check_array(self.knots, dtype=np.float64) if base_knots.shape[0] < 2: raise ValueError("Number of knots, knots.shape[0], must be >= 2.") elif base_knots.shape[1] != n_features: raise ValueError("knots.shape[1] == n_features is violated.") elif not np.all(np.diff(base_knots, axis=0) > 0): raise ValueError("knots must be sorted without duplicates.") if self.extrapolation not in ( "error", "constant", "linear", "continue", "periodic", ): raise ValueError( "extrapolation must be one of 'error', " "'constant', 'linear', 'continue' or 'periodic'." ) if not isinstance(self.include_bias, (bool, np.bool_)): raise ValueError("include_bias must be bool.") # number of knots for base interval n_knots = base_knots.shape[0] if self.extrapolation == "periodic" and n_knots <= self.degree: raise ValueError( "Periodic splines require degree < n_knots. Got n_knots=" f"{n_knots} and degree={self.degree}." ) # number of splines basis functions if self.extrapolation != "periodic": n_splines = n_knots + self.degree - 1 else: # periodic splines have self.degree less degrees of freedom n_splines = n_knots - 1 degree = self.degree n_out = n_features * n_splines # We have to add degree number of knots below, and degree number knots # above the base knots in order to make the spline basis complete. if self.extrapolation == "periodic": # For periodic splines the spacing of the first / last degree knots # needs to be a continuation of the spacing of the last / first # base knots. period = base_knots[-1] - base_knots[0] knots = np.r_[ base_knots[-(degree + 1) : -1] - period, base_knots, base_knots[1 : (degree + 1)] + period, ] else: # Eilers & Marx in "Flexible smoothing with B-splines and # penalties" https://doi.org/10.1214/ss/1038425655 advice # against repeating first and last knot several times, which # would have inferior behaviour at boundaries if combined with # a penalty (hence P-Spline). We follow this advice even if our # splines are unpenalized. Meaning we do not: # knots = np.r_[ # np.tile(base_knots.min(axis=0), reps=[degree, 1]), # base_knots, # np.tile(base_knots.max(axis=0), reps=[degree, 1]) # ] # Instead, we reuse the distance of the 2 fist/last knots. dist_min = base_knots[1] - base_knots[0] dist_max = base_knots[-1] - base_knots[-2] knots = np.r_[ linspace( base_knots[0] - degree * dist_min, base_knots[0] - dist_min, num=degree, ), base_knots, linspace( base_knots[-1] + dist_max, base_knots[-1] + degree * dist_max, num=degree, ), ] # With a diagonal coefficient matrix, we get back the spline basis # elements, i.e. the design matrix of the spline. # Note, BSpline appreciates C-contiguous float64 arrays as c=coef. coef = np.eye(n_splines, dtype=np.float64) if self.extrapolation == "periodic": coef = np.concatenate((coef, coef[:degree, :])) extrapolate = self.extrapolation in ["periodic", "continue"] bsplines = [ BSpline.construct_fast( knots[:, i], coef, self.degree, extrapolate=extrapolate ) for i in range(n_features) ] self.bsplines_ = bsplines self.n_features_out_ = n_out - n_features * (1 - self.include_bias) return self def transform(self, X): """Transform each feature data to B-splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data to transform. Returns ------- XBS : ndarray of shape (n_samples, n_features * n_splines) The matrix of features, where n_splines is the number of bases elements of the B-splines, n_knots + degree - 1. """ check_is_fitted(self) X = self._validate_data(X, reset=False, accept_sparse=False, ensure_2d=True) n_samples, n_features = X.shape n_splines = self.bsplines_[0].c.shape[1] degree = self.degree # Note that scipy BSpline returns float64 arrays and converts input # x=X[:, i] to c-contiguous float64. n_out = self.n_features_out_ + n_features * (1 - self.include_bias) if X.dtype in FLOAT_DTYPES: dtype = X.dtype else: dtype = np.float64 XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order) for i in range(n_features): spl = self.bsplines_[i] if self.extrapolation in ("continue", "error", "periodic"): if self.extrapolation == "periodic": # With periodic extrapolation we map x to the segment # [spl.t[k], spl.t[n]]. # This is equivalent to BSpline(.., extrapolate="periodic") # for scipy>=1.0.0. n = spl.t.size - spl.k - 1 # Assign to new array to avoid inplace operation x = spl.t[spl.k] + (X[:, i] - spl.t[spl.k]) % ( spl.t[n] - spl.t[spl.k] ) else: x = X[:, i] XBS[:, (i * n_splines) : ((i + 1) * n_splines)] = spl(x) else: xmin = spl.t[degree] xmax = spl.t[-degree - 1] mask = (xmin <= X[:, i]) & (X[:, i] <= xmax) XBS[mask, (i * n_splines) : ((i + 1) * n_splines)] = spl(X[mask, i]) # Note for extrapolation: # 'continue' is already returned as is by scipy BSplines if self.extrapolation == "error": # BSpline with extrapolate=False does not raise an error, but # output np.nan. if np.any(np.isnan(XBS[:, (i * n_splines) : ((i + 1) * n_splines)])): raise ValueError( "X contains values beyond the limits of the knots." ) elif self.extrapolation == "constant": # Set all values beyond xmin and xmax to the value of the # spline basis functions at those two positions. # Only the first degree and last degree number of splines # have non-zero values at the boundaries. # spline values at boundaries f_min = spl(xmin) f_max = spl(xmax) mask = X[:, i] < xmin if np.any(mask): XBS[mask, (i * n_splines) : (i * n_splines + degree)] = f_min[ :degree ] mask = X[:, i] > xmax if np.any(mask): XBS[ mask, ((i + 1) * n_splines - degree) : ((i + 1) * n_splines), ] = f_max[-degree:] elif self.extrapolation == "linear": # Continue the degree first and degree last spline bases # linearly beyond the boundaries, with slope = derivative at # the boundary. # Note that all others have derivative = value = 0 at the # boundaries. # spline values at boundaries f_min, f_max = spl(xmin), spl(xmax) # spline derivatives = slopes at boundaries fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1) # Compute the linear continuation. if degree <= 1: # For degree=1, the derivative of 2nd spline is not zero at # boundary. For degree=0 it is the same as 'constant'. degree += 1 for j in range(degree): mask = X[:, i] < xmin if np.any(mask): XBS[mask, i * n_splines + j] = ( f_min[j] + (X[mask, i] - xmin) * fp_min[j] ) mask = X[:, i] > xmax if np.any(mask): k = n_splines - 1 - j XBS[mask, i * n_splines + k] = ( f_max[k] + (X[mask, i] - xmax) * fp_max[k] ) if self.include_bias: return XBS else: # We throw away one spline basis per feature. # We chose the last one. indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0] return XBS[:, indices]