Source code for feature_engine.transformation.yeojohnson
# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause
from typing import List, Optional, Union
import pandas as pd
import scipy.stats as stats
from feature_engine.base_transformers import BaseNumericalTransformer
from feature_engine.variable_manipulation import _check_input_parameter_variables
[docs]class YeoJohnsonTransformer(BaseNumericalTransformer):
"""
The YeoJohnsonTransformer() applies the Yeo-Johnson transformation to the
numerical variables.
The Yeo-Johnson transformation implemented by this transformer is that of
SciPy.stats:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html
The YeoJohnsonTransformer() works only with numerical variables.
A list of variables can be passed as an argument. Alternatively, the
transformer will automatically select and transform all numerical
variables.
Parameters
----------
variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.
Attributes
----------
lambda_dict_
Dictionary containing the best lambda for the Yeo-Johnson per variable.
variables_:
The group of variables that will be transformed.
n_features_in_:
The number of features in the train set used in fit.
Methods
-------
fit:
Learn the optimal lambda for the Yeo-Johnson transformation.
transform:
Apply the Yeo-Johnson transformation.
fit_transform:
Fit to data, then transform it.
References
----------
.. [1] Weisberg S. "Yeo-Johnson Power Transformations".
https://www.stat.umn.edu/arc/yjpower.pdf
"""
def __init__(
self, variables: Union[None, int, str, List[Union[str, int]]] = None
) -> None:
self.variables = _check_input_parameter_variables(variables)
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None):
"""
Learn the optimal lambda for the Yeo-Johnson transformation.
Parameters
----------
X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the
variables to transform.
y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.
Raises
------
TypeError
- If the input is not a Pandas DataFrame
- If any of the user provided variables are not numerical
ValueError
- If there are no numerical variables in the df or the df is empty
- If the variable(s) contain null values
Returns
-------
self
"""
# check input dataframe
X = super().fit(X)
self.lambda_dict_ = {}
# to avoid NumPy error
X[self.variables_] = X[self.variables_].astype("float")
for var in self.variables_:
_, self.lambda_dict_[var] = stats.yeojohnson(X[var])
self.n_features_in_ = X.shape[1]
return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""
Apply the Yeo-Johnson transformation.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.
Raises
------
TypeError
If the input is not a Pandas DataFrame
ValueError
- If the variable(s) contain null values
- If the df has different number of features than the df used in fit()
Returns
-------
X: pandas dataframe
The dataframe with the transformed variables.
"""
# check input dataframe and if class was fitted
X = super().transform(X)
for feature in self.variables_:
X[feature] = stats.yeojohnson(X[feature], lmbda=self.lambda_dict_[feature])
return X