Source code for feature_engine.transformation.reciprocal
# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause
from typing import List, Optional, Union
import numpy as np
import pandas as pd
from feature_engine.base_transformers import BaseNumericalTransformer
from feature_engine.validation import _return_tags
from feature_engine.variable_manipulation import _check_input_parameter_variables
[docs]class ReciprocalTransformer(BaseNumericalTransformer):
"""
The ReciprocalTransformer() applies the reciprocal transformation 1 / x
to numerical variables.
The ReciprocalTransformer() only works with numerical variables with non-zero
values. If a variable contains the value 0, the transformer will raise an error.
A list of variables can be passed as an argument. Alternatively, the
transformer will automatically select and transform all numerical
variables.
Parameters
----------
variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.
Attributes
----------
variables_:
The group of variables that will be transformed.
n_features_in_:
The number of features in the train set used in fit.
Methods
-------
fit:
This transformer does not learn parameters.
transform:
Apply the reciprocal 1 / x transformation.
fit_transform:
Fit to data, then transform it.
inverse_transform:
Convert the data back to the original representation.
"""
def __init__(
self, variables: Union[None, int, str, List[Union[str, int]]] = None
) -> None:
self.variables = _check_input_parameter_variables(variables)
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None):
"""
This transformer does not learn parameters.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the
variables to transform.
y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.
Raises
------
TypeError
- If the input is not a Pandas DataFrame
- If any of the user provided variables are not numerical
ValueError
- If there are no numerical variables in the df or the df is empty
- If the variable(s) contain null values
- If some variables contain zero as values
Returns
-------
self
"""
# check input dataframe
X = super().fit(X)
# check if the variables contain the value 0
if (X[self.variables_] == 0).any().any():
raise ValueError(
"Some variables contain the value zero, can't apply reciprocal "
"transformation."
)
self.n_features_in_ = X.shape[1]
return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""
Apply the reciprocal 1 / x transformation.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.
Raises
------
TypeError
If the input is not a Pandas DataFrame
ValueError
- If the variable(s) contain null values
- If the df has different number of features than the df used in fit()
- If some variables contain zero values
Returns
-------
X: pandas dataframe
The dataframe with the transformed variables.
"""
# check input dataframe and if class was fitted
X = super().transform(X)
# check if the variables contain the value 0
if (X[self.variables_] == 0).any().any():
raise ValueError(
"Some variables contain the value zero, can't apply reciprocal "
"transformation."
)
# transform
# for some reason reciprocal does not work with integers
X.loc[:, self.variables_] = X.loc[:, self.variables_].astype("float")
X.loc[:, self.variables_] = np.reciprocal(X.loc[:, self.variables_])
return X
[docs] def inverse_transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""
Convert the data back to the original representation.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.
Raises
------
TypeError
If the input is not a Pandas DataFrame
ValueError
- If the variable(s) contain null values
- If the df has different number of features than the df used in fit()
- If some variables contain zero values
Returns
-------
X: pandas dataframe
The dataframe with the transformed variables.
"""
# inverse_transform
return self.transform(X)
def _more_tags(self):
tags_dict = _return_tags()
# ======= this tests fail because the transformers throw an error
# when the values are 0. Nothing to do with the test itself but
# mostly with the data created and used in the test
msg = (
"transformers raise errors when data contains zeroes, thus this check fails"
)
tags_dict["_xfail_checks"]["check_estimators_dtypes"] = msg
tags_dict["_xfail_checks"]["check_estimators_fit_returns_self"] = msg
tags_dict["_xfail_checks"]["check_pipeline_consistency"] = msg
tags_dict["_xfail_checks"]["check_estimators_overwrite_params"] = msg
tags_dict["_xfail_checks"]["check_estimators_pickle"] = msg
tags_dict["_xfail_checks"]["check_transformer_general"] = msg
return tags_dict