Source code for feature_engine.transformation.power

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import numpy as np
import pandas as pd

from feature_engine.base_transformers import BaseNumericalTransformer
from feature_engine.variable_manipulation import _check_input_parameter_variables


[docs]class PowerTransformer(BaseNumericalTransformer): """ The PowerTransformer() applies power or exponential transformations to numerical variables. The PowerTransformer() works only with numerical variables. A list of variables can be passed as an argument. Alternatively, the transformer will automatically select and transform all numerical variables. Parameters ---------- variables: list, default=None The list of numerical variables to transform. If None, the transformer will automatically find and select all numerical variables. exp: float or int, default=0.5 The power (or exponent). Attributes ---------- variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: This transformer does not learn parameters. transform: Apply the power transformation to the variables. fit_transform: Fit to data, then transform it. inverse_transform: Convert the data back to the original representation. """ def __init__( self, variables: Union[None, int, str, List[Union[str, int]]] = None, exp: Union[float, int] = 0.5, ): if not isinstance(exp, (float, int)): raise ValueError("exp must be a float or an int") self.exp = exp self.variables = _check_input_parameter_variables(variables)
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ This transformer does not learn parameters. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training input samples. Can be the entire dataframe, not just the variables to transform. y: pandas Series, default=None It is not needed in this transformer. You can pass y or None. Raises ------ TypeError - If the input is not a Pandas DataFrame - If any of the user provided variables are not numerical ValueError - If there are no numerical variables in the df or the df is empty - If the variable(s) contain null values Returns ------- self """ # check input dataframe X = super().fit(X) self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Apply the power transformation to the variables. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features] The data to be transformed. Raises ------ TypeError If the input is not a Pandas DataFrame ValueError - If the variable(s) contain null values - If the df has different number of features than the df used in fit() Returns ------- X: pandas Dataframe The dataframe with the power transformed variables. """ # check input dataframe and if class was fitted X = super().transform(X) # transform X.loc[:, self.variables_] = np.power(X.loc[:, self.variables_], self.exp) return X
[docs] def inverse_transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Convert the data back to the original representation. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features] The data to be transformed. Raises ------ TypeError If the input is not a Pandas DataFrame ValueError - If the variable(s) contain null values - If the df has different number of features than the df used in fit() Returns ------- X: pandas Dataframe The dataframe with the power transformed variables. """ # check input dataframe and if class was fitted X = super().transform(X) # inverse_transform X.loc[:, self.variables_] = np.power(X.loc[:, self.variables_], 1 / self.exp) return X