Source code for feature_engine.transformation.boxcox

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd
import scipy.stats as stats

from feature_engine.base_transformers import BaseNumericalTransformer
from feature_engine.validation import _return_tags
from feature_engine.variable_manipulation import _check_input_parameter_variables


[docs]class BoxCoxTransformer(BaseNumericalTransformer): """ The BoxCoxTransformer() applies the BoxCox transformation to numerical variables. The Box-Cox transformation is defined as: - T(Y)=(Y exp(λ)−1)/λ if λ!=0 - log(Y) otherwise where Y is the response variable and λ is the transformation parameter. λ varies, typically from -5 to 5. In the transformation, all values of λ are considered and the optimal value for a given variable is selected. The BoxCox transformation implemented by this transformer is that of SciPy.stats: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html The BoxCoxTransformer() works only with numerical positive variables (>=0). A list of variables can be passed as an argument. Alternatively, the transformer will automatically select and transform all numerical variables. Parameters ---------- variables: list, default=None The list of numerical variables to transform. If None, the transformer will automatically find and select all numerical variables. Attributes ---------- lambda_dict_: Dictionary with the best BoxCox exponent per variable. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Learn the optimal lambda for the BoxCox transformation. transform: Apply the BoxCox transformation. fit_transform: Fit to data, then transform it. References ---------- .. [1] Box and Cox. "An Analysis of Transformations". Read at a RESEARCH MEETING, 1964. https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x """ def __init__( self, variables: Union[None, int, str, List[Union[str, int]]] = None ) -> None: self.variables = _check_input_parameter_variables(variables)
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the optimal lambda for the BoxCox transformation. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training input samples. Can be the entire dataframe, not just the variables to transform. y: pandas Series, default=None It is not needed in this transformer. You can pass y or None. Raises ------ TypeError - If the input is not a Pandas DataFrame - If any of the user provided variables are not numerical ValueError - If there are no numerical variables in the df or the df is empty - If the variable(s) contain null values - If some variables contain zero values Returns ------- self """ # check input dataframe X = super().fit(X) self.lambda_dict_ = {} for var in self.variables_: _, self.lambda_dict_[var] = stats.boxcox(X[var]) self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Apply the BoxCox transformation. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features] The data to be transformed. Raises ------ TypeError If the input is not a Pandas DataFrame ValueError - If the variable(s) contain null values - If the df has different number of features than the df used in fit() - If some variables contain negative values Returns ------- X: pandas dataframe The dataframe with the transformed variables. """ # check input dataframe and if class was fitted X = super().transform(X) # transform for feature in self.variables_: X[feature] = stats.boxcox(X[feature], lmbda=self.lambda_dict_[feature]) return X
def _more_tags(self): tags_dict = _return_tags() # ======= this tests fail because the transformers throw an error # when the values are 0. Nothing to do with the test itself but # mostly with the data created and used in the test msg = ( "transformers raise errors when data contains zeroes, thus this check fails" ) tags_dict["_xfail_checks"]["check_estimators_dtypes"] = msg tags_dict["_xfail_checks"]["check_estimators_fit_returns_self"] = msg tags_dict["_xfail_checks"]["check_pipeline_consistency"] = msg tags_dict["_xfail_checks"]["check_estimators_overwrite_params"] = msg tags_dict["_xfail_checks"]["check_estimators_pickle"] = msg tags_dict["_xfail_checks"]["check_transformer_general"] = msg # boxcox fails this test as well msg = "scipy.stats.boxcox does not like the input data" tags_dict["_xfail_checks"]["check_methods_subset_invariance"] = msg tags_dict["_xfail_checks"]["check_fit2d_1sample"] = msg return tags_dict