Source code for feature_engine.outliers.winsorizer

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd

from feature_engine.dataframe_checks import (
    _check_contains_inf,
    _check_contains_na,
    _is_dataframe,
)
from feature_engine.outliers.base_outlier import BaseOutlier
from feature_engine.variable_manipulation import (
    _check_input_parameter_variables,
    _find_or_check_numerical_variables,
)


[docs]class Winsorizer(BaseOutlier): """ The Winsorizer() caps maximum and / or minimum values of a variable. The Winsorizer() works only with numerical variables. A list of variables can be indicated. Alternatively, the Winsorizer() will select all numerical variables in the train set. The Winsorizer() first calculates the capping values at the end of the distribution. The values are determined using: - a Gaussian approximation, - the inter-quantile range proximity rule (IQR) - percentiles. **Gaussian limits:** - right tail: mean + 3* std - left tail: mean - 3* std **IQR limits:** - right tail: 75th quantile + 3* IQR - left tail: 25th quantile - 3* IQR where IQR is the inter-quartile range: 75th quantile - 25th quantile. **percentiles or quantiles:** - right tail: 95th percentile - left tail: 5th percentile You can select how far out to cap the maximum or minimum values with the parameter 'fold'. If `capping_method='gaussian'` fold gives the value to multiply the std. If `capping_method='iqr'` fold is the value to multiply the IQR. If `capping_method='quantile'`, fold is the percentile on each tail that should be censored. For example, if fold=0.05, the limits will be the 5th and 95th percentiles. If fold=0.1, the limits will be the 10th and 90th percentiles. The transformer first finds the values at one or both tails of the distributions (fit). The transformer then caps the variables (transform). Parameters ---------- capping_method: str, default=gaussian Desired capping method. Can take 'gaussian', 'iqr' or 'quantiles'. 'gaussian': the transformer will find the maximum and / or minimum values to cap the variables using the Gaussian approximation. 'iqr': the transformer will find the boundaries using the IQR proximity rule. 'quantiles': the limits are given by the percentiles. tail: str, default=right Whether to cap outliers on the right, left or both tails of the distribution. Can take 'left', 'right' or 'both'. fold: int or float, default=3 How far out to to place the capping values. The number that will multiply the std or IQR to calculate the capping values. Recommended values, 2 or 3 for the gaussian approximation, or 1.5 or 3 for the IQR proximity rule. If capping_method='quantile', then 'fold' indicates the percentile. So if fold=0.05, the limits will be the 95th and 5th percentiles. **Note**: Outliers will be removed up to a maximum of the 20th percentiles on both sides. Thus, when capping_method='quantile', then 'fold' takes values between 0 and 0.20. variables: list, default=None The list of variables for which the outliers will be capped. If None, the transformer will find and select all numerical variables. missing_values: string, default='raise' Indicates if missing values should be ignored or raised. Sometimes we want to remove outliers in the raw, original data, sometimes, we may want to remove outliers in the already pre-transformed data. If missing_values='ignore', the transformer will ignore missing data when learning the capping parameters or transforming the data. If missing_values='raise' the transformer will return an error if the training or the datasets to transform contain missing values. Attributes ---------- right_tail_caps_: Dictionary with the maximum values at which variables will be capped. left_tail_caps_ : Dictionary with the minimum values at which variables will be capped. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Learn the values that should be used to replace outliers. transform: Cap the variables. fit_transform: Fit to the data. Then transform it. """ def __init__( self, capping_method: str = "gaussian", tail: str = "right", fold: Union[int, float] = 3, variables: Union[None, int, str, List[Union[str, int]]] = None, missing_values: str = "raise", ) -> None: if capping_method not in ["gaussian", "iqr", "quantiles"]: raise ValueError( "capping_method takes only values 'gaussian', 'iqr' or 'quantiles'" ) if tail not in ["right", "left", "both"]: raise ValueError("tail takes only values 'right', 'left' or 'both'") if fold <= 0: raise ValueError("fold takes only positive numbers") if capping_method == "quantiles" and fold > 0.2: raise ValueError( "with capping_method ='quantiles', fold takes values between 0 and " "0.20 only." ) if missing_values not in ["raise", "ignore"]: raise ValueError("missing_values takes only values 'raise' or 'ignore'") self.capping_method = capping_method self.tail = tail self.fold = fold self.variables = _check_input_parameter_variables(variables) self.missing_values = missing_values
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the values that should be used to replace outliers. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features] The training input samples. y : pandas Series, default=None y is not needed in this transformer. You can pass y or None. Raises ------ TypeError If the input is not a Pandas DataFrame Returns ------- self """ # check input dataframe X = _is_dataframe(X) # find or check for numerical variables self.variables_ = _find_or_check_numerical_variables(X, self.variables) if self.missing_values == "raise": # check if dataset contains na _check_contains_na(X, self.variables_) _check_contains_inf(X, self.variables_) self.right_tail_caps_ = {} self.left_tail_caps_ = {} # estimate the end values if self.tail in ["right", "both"]: if self.capping_method == "gaussian": self.right_tail_caps_ = ( X[self.variables_].mean() + self.fold * X[self.variables_].std() ).to_dict() elif self.capping_method == "iqr": IQR = X[self.variables_].quantile(0.75) - X[self.variables_].quantile( 0.25 ) self.right_tail_caps_ = ( X[self.variables_].quantile(0.75) + (IQR * self.fold) ).to_dict() elif self.capping_method == "quantiles": self.right_tail_caps_ = ( X[self.variables_].quantile(1 - self.fold).to_dict() ) if self.tail in ["left", "both"]: if self.capping_method == "gaussian": self.left_tail_caps_ = ( X[self.variables_].mean() - self.fold * X[self.variables_].std() ).to_dict() elif self.capping_method == "iqr": IQR = X[self.variables_].quantile(0.75) - X[self.variables_].quantile( 0.25 ) self.left_tail_caps_ = ( X[self.variables_].quantile(0.25) - (IQR * self.fold) ).to_dict() elif self.capping_method == "quantiles": self.left_tail_caps_ = X[self.variables_].quantile(self.fold).to_dict() self.n_features_in_ = X.shape[1] return self
# Ugly work around to import the docstring for Sphinx, otherwise not necessary
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: X = super().transform(X) return X
transform.__doc__ = BaseOutlier.transform.__doc__