Source code for feature_engine.imputation.random_sample

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import numpy as np
import pandas as pd

from feature_engine.dataframe_checks import _is_dataframe
from feature_engine.imputation.base_imputer import BaseImputer
from feature_engine.variable_manipulation import _check_input_parameter_variables


# for RandomSampleImputer
def _define_seed(
    X: pd.DataFrame,
    index: int,
    seed_variables: Union[str, int, List[Union[str, int]]],
    how: str = "add",
) -> int:
    # determine seed by adding or multiplying the value of 1 or
    # more variables
    if how == "add":
        internal_seed = int(np.round(X.loc[index, seed_variables].sum(), 0))
    elif how == "multiply":
        internal_seed = int(np.round(X.loc[index, seed_variables].product(), 0))
    return internal_seed


[docs]class RandomSampleImputer(BaseImputer): """ The RandomSampleImputer() replaces missing data with a random sample extracted from the variables in the training set. The RandomSampleImputer() works with both numerical and categorical variables. **Note** The Random samples used to replace missing values may vary from execution to execution. This may affect the results of your work. This, it is advisable to set a seed. There are 2 ways in which the seed can be set in the RandomSampleImputer(): If seed = 'general' then the random_state can be either None or an integer. The seed will be used as the random_state and all observations will be imputed in one go. This is equivalent to `pandas.sample(n, random_state=seed)` where n is the number of observations with missing data. If seed = 'observation', then the random_state should be a variable name or a list of variable names. The seed will be calculated observation per observation, either by adding or multiplying the seeding variable values, and passed to the random_state. Then, a value will be extracted from the train set using that seed and used to replace the NAN in particular observation. This is the equivalent of `pandas.sample(1, random_state=var1+var2)` if the 'seeding_method' is set to 'add' or `pandas.sample(1, random_state=var1*var2)` if the 'seeding_method' is set to 'multiply'. For more details on why this functionality is important refer to the course Feature Engineering for Machine Learning in Udemy: https://www.udemy.com/feature-engineering-for-machine-learning/ Note, if the variables indicated in the random_state list are not numerical the imputer will return an error. Note also that the variables indicated as seed should not contain missing values. This estimator stores a copy of the training set when the fit() method is called. Therefore, the object can become quite heavy. Also, it may not be GDPR compliant if your training data set contains Personal Information. Please check if this behaviour is allowed within your organisation. Parameters ---------- random_state: int, str or list, default=None The random_state can take an integer to set the seed when extracting the random samples. Alternatively, it can take a variable name or a list of variables, which values will be used to determine the seed observation per observation. seed: str, default='general' Indicates whether the seed should be set for each observation with missing values, or if one seed should be used to impute all observations in one go. **general**: one seed will be used to impute the entire dataframe. This is equivalent to setting the seed in pandas.sample(random_state). **observation**: the seed will be set for each observation using the values of the variables indicated in the random_state for that particular observation. seeding_method: str, default='add' If more than one variable are indicated to seed the random sampling per observation, you can choose to combine those values as an addition or a multiplication. Can take the values 'add' or 'multiply'. variables: list, default=None The list of variables to be imputed. If None, the imputer will select all variables in the train set. Attributes ---------- X_: Copy of the training dataframe from which to extract the random samples. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Make a copy of the dataframe transform: Impute missing data. fit_transform: Fit to the data, then transform it. """ def __init__( self, random_state: Union[None, int, str, List[Union[str, int]]] = None, seed: str = "general", seeding_method: str = "add", variables: Union[None, int, str, List[Union[str, int]]] = None, ) -> None: if seed not in ["general", "observation"]: raise ValueError("seed takes only values 'general' or 'observation'") if seeding_method not in ["add", "multiply"]: raise ValueError("seeding_method takes only values 'add' or 'multiply'") if seed == "general" and random_state: if not isinstance(random_state, int): raise ValueError( "if seed == 'general' then random_state must take an integer" ) if seed == "observation" and not random_state: raise ValueError( "if seed == 'observation' the random state must take the name of one " "or more variables which will be used to seed the imputer" ) self.variables = _check_input_parameter_variables(variables) self.random_state = random_state self.seed = seed self.seeding_method = seeding_method
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Makes a copy of the train set. Only stores a copy of the variables to impute. This copy is then used to randomly extract the values to fill the missing data during transform. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. Only a copy of the indicated variables will be stored in the transformer. y: None y is not needed in this imputation. You can pass None or y. Raises ------ TypeError If the input is not a Pandas DataFrame Returns ------- self """ # check input dataframe X = _is_dataframe(X) # find variables to impute if not self.variables: self.variables_ = [var for var in X.columns] else: self.variables_ = self.variables # take a copy of the selected variables self.X_ = X[self.variables_].copy() # check the variables assigned to the random state if self.seed == "observation": self.random_state = _check_input_parameter_variables(self.random_state) if isinstance(self.random_state, (int, str)): self.random_state = [self.random_state] if self.random_state and any( var for var in self.random_state if var not in X.columns ): raise ValueError( "There are variables assigned as random state which are not part " "of the training dataframe." ) self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Replace missing data with random values taken from the train set. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe to be transformed. Raises ------ TypeError If the input is not a Pandas DataFrame Returns ------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe without missing values in the transformed variables. """ X = self._check_transform_input_and_state(X) # random sampling with a general seed if self.seed == "general": for feature in self.variables_: if X[feature].isnull().sum() > 0: # determine number of data points to extract at random n_samples = X[feature].isnull().sum() # extract values random_sample = ( self.X_[feature] .dropna() .sample(n_samples, replace=True, random_state=self.random_state) ) # re-index: pandas needs this to add the values to the right # observations random_sample.index = X[X[feature].isnull()].index # replace na X.loc[X[feature].isnull(), feature] = random_sample # random sampling observation per observation elif self.seed == "observation" and self.random_state: for feature in self.variables_: if X[feature].isnull().sum() > 0: # loop over each observation with missing data for i in X[X[feature].isnull()].index: # find the seed using additional variables internal_seed = _define_seed( X, i, self.random_state, how=self.seeding_method ) # extract 1 value at random random_sample = ( self.X_[feature] .dropna() .sample(1, replace=True, random_state=internal_seed) ) random_sample = random_sample.values[0] # replace the missing data point X.loc[i, feature] = random_sample return X