Source code for feature_engine.imputation.end_tail

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd

from feature_engine.dataframe_checks import _is_dataframe
from feature_engine.imputation.base_imputer import BaseImputer
from feature_engine.variable_manipulation import (
    _check_input_parameter_variables,
    _find_or_check_numerical_variables,
)


[docs]class EndTailImputer(BaseImputer): """ The EndTailImputer() replaces missing data by a value at either tail of the distribution. It works only with numerical variables. You can indicate the variables to be imputed in a list. Alternatively, the EndTailImputer() will automatically find and select all variables of type numeric. The imputer first calculates the values at the end of the distribution for each variable (fit). The values at the end of the distribution are determined using the Gaussian limits, the the IQR proximity rule limits, or a factor of the maximum value: Gaussian limits: - right tail: mean + 3*std - left tail: mean - 3*std IQR limits: - right tail: 75th quantile + 3*IQR - left tail: 25th quantile - 3*IQR where IQR is the inter-quartile range = 75th quantile - 25th quantile Maximum value: - right tail: max * 3 - left tail: not applicable You can change the factor that multiplies the std, IQR or the maximum value using the parameter 'fold' (we used fold=3 in the examples above). The imputer then replaces the missing data with the estimated values (transform). Parameters ---------- imputation_method: str, default=gaussian Method to be used to find the replacement values. Can take 'gaussian', 'iqr' or 'max'. **gaussian**: the imputer will use the Gaussian limits to find the values to replace missing data. **iqr**: the imputer will use the IQR limits to find the values to replace missing data. **max**: the imputer will use the maximum values to replace missing data. Note that if 'max' is passed, the parameter 'tail' is ignored. tail: str, default=right Indicates if the values to replace missing data should be selected from the right or left tail of the variable distribution. Can take values 'left' or 'right'. fold: int, default=3 Factor to multiply the std, the IQR or the Max values. Recommended values are 2 or 3 for Gaussian, or 1.5 or 3 for IQR. variables: list, default=None The list of variables to be imputed. If None, the imputer will find and select all variables of type numeric. Attributes ---------- imputer_dict_: Dictionary with the values at the end of the distribution per variable. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Learn values to replace missing data. transform: Impute missing data. fit_transform: Fit to the data, then transform it. """ def __init__( self, imputation_method: str = "gaussian", tail: str = "right", fold: int = 3, variables: Union[None, int, str, List[Union[str, int]]] = None, ) -> None: if imputation_method not in ["gaussian", "iqr", "max"]: raise ValueError( "imputation_method takes only values 'gaussian', 'iqr' or 'max'" ) if tail not in ["right", "left"]: raise ValueError("tail takes only values 'right' or 'left'") if fold <= 0: raise ValueError("fold takes only positive numbers") self.imputation_method = imputation_method self.tail = tail self.fold = fold self.variables = _check_input_parameter_variables(variables)
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the values at the end of the variable distribution. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. y: pandas Series, default=None y is not needed in this imputation. You can pass None or y. Raises ------ TypeError - If the input is not a Pandas DataFrame - If any of the user provided variables are not numerical ValueError If there are no numerical variables in the df or the df is empty Returns ------- self """ # check input dataframe X = _is_dataframe(X) # find or check for numerical variables self.variables_ = _find_or_check_numerical_variables(X, self.variables) # estimate imputation values if self.imputation_method == "max": self.imputer_dict_ = (X[self.variables_].max() * self.fold).to_dict() elif self.imputation_method == "gaussian": if self.tail == "right": self.imputer_dict_ = ( X[self.variables_].mean() + self.fold * X[self.variables_].std() ).to_dict() elif self.tail == "left": self.imputer_dict_ = ( X[self.variables_].mean() - self.fold * X[self.variables_].std() ).to_dict() elif self.imputation_method == "iqr": IQR = X[self.variables_].quantile(0.75) - X[self.variables_].quantile(0.25) if self.tail == "right": self.imputer_dict_ = ( X[self.variables_].quantile(0.75) + (IQR * self.fold) ).to_dict() elif self.tail == "left": self.imputer_dict_ = ( X[self.variables_].quantile(0.25) - (IQR * self.fold) ).to_dict() self.n_features_in_ = X.shape[1] return self
# Ugly work around to import the docstring for Sphinx, otherwise not necessary
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: X = super().transform(X) return X
transform.__doc__ = BaseImputer.transform.__doc__