# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause
from typing import List, Optional, Union
import pandas as pd
from feature_engine.dataframe_checks import _is_dataframe
from feature_engine.imputation.base_imputer import BaseImputer
from feature_engine.variable_manipulation import (
    _check_input_parameter_variables,
    _find_or_check_numerical_variables,
)
[docs]class EndTailImputer(BaseImputer):
    """
    The EndTailImputer() replaces missing data by a value at either tail of the
    distribution. It works only with numerical variables.
    You can indicate the variables to be imputed in a list. Alternatively, the
    EndTailImputer() will automatically find and select all variables of type numeric.
    The imputer first calculates the values at the end of the distribution for each
    variable (fit). The values at the end of the distribution are determined using
    the Gaussian limits, the the IQR proximity rule limits, or a factor of the maximum
    value:
    Gaussian limits:
        - right tail: mean + 3*std
        - left tail: mean - 3*std
    IQR limits:
        - right tail: 75th quantile + 3*IQR
        - left tail:  25th quantile - 3*IQR
    where IQR is the inter-quartile range = 75th quantile - 25th quantile
    Maximum value:
        - right tail: max * 3
        - left tail: not applicable
    You can change the factor that multiplies the std, IQR or the maximum value
    using the parameter 'fold' (we used fold=3 in the examples above).
    The imputer then replaces the missing data with the estimated values (transform).
    Parameters
    ----------
    imputation_method: str, default=gaussian
        Method to be used to find the replacement values. Can take 'gaussian',
        'iqr' or 'max'.
        **gaussian**: the imputer will use the Gaussian limits to find the values
        to replace missing data.
        **iqr**: the imputer will use the IQR limits to find the values to replace
        missing data.
        **max**: the imputer will use the maximum values to replace missing data. Note
        that if 'max' is passed, the parameter 'tail' is ignored.
    tail: str, default=right
        Indicates if the values to replace missing data should be selected from the
        right or left tail of the variable distribution. Can take values 'left' or
        'right'.
    fold: int, default=3
        Factor to multiply the std, the IQR or the Max values. Recommended values
        are 2 or 3 for Gaussian, or 1.5 or 3 for IQR.
    variables: list, default=None
        The list of variables to be imputed. If None, the imputer will find and
        select all variables of type numeric.
    Attributes
    ----------
    imputer_dict_:
        Dictionary with the values at the end of the distribution per variable.
    variables_:
        The group of variables that will be transformed.
    n_features_in_:
        The number of features in the train set used in fit.
    Methods
    -------
    fit:
        Learn values to replace missing data.
    transform:
        Impute missing data.
    fit_transform:
        Fit to the data, then transform it.
    """
    def __init__(
        self,
        imputation_method: str = "gaussian",
        tail: str = "right",
        fold: int = 3,
        variables: Union[None, int, str, List[Union[str, int]]] = None,
    ) -> None:
        if imputation_method not in ["gaussian", "iqr", "max"]:
            raise ValueError(
                "imputation_method takes only values 'gaussian', 'iqr' or 'max'"
            )
        if tail not in ["right", "left"]:
            raise ValueError("tail takes only values 'right' or 'left'")
        if fold <= 0:
            raise ValueError("fold takes only positive numbers")
        self.imputation_method = imputation_method
        self.tail = tail
        self.fold = fold
        self.variables = _check_input_parameter_variables(variables)
[docs]    def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None):
        """
        Learn the values at the end of the variable distribution.
        Parameters
        ----------
        X: pandas dataframe of shape = [n_samples, n_features]
            The training dataset.
        y: pandas Series, default=None
            y is not needed in this imputation. You can pass None or y.
        Raises
        ------
        TypeError
            - If the input is not a Pandas DataFrame
            - If any of the user provided variables are not numerical
        ValueError
            If there are no numerical variables in the df or the df is empty
        Returns
        -------
        self
        """
        # check input dataframe
        X = _is_dataframe(X)
        # find or check for numerical variables
        self.variables_ = _find_or_check_numerical_variables(X, self.variables)
        # estimate imputation values
        if self.imputation_method == "max":
            self.imputer_dict_ = (X[self.variables_].max() * self.fold).to_dict()
        elif self.imputation_method == "gaussian":
            if self.tail == "right":
                self.imputer_dict_ = (
                    X[self.variables_].mean() + self.fold * X[self.variables_].std()
                ).to_dict()
            elif self.tail == "left":
                self.imputer_dict_ = (
                    X[self.variables_].mean() - self.fold * X[self.variables_].std()
                ).to_dict()
        elif self.imputation_method == "iqr":
            IQR = X[self.variables_].quantile(0.75) - X[self.variables_].quantile(0.25)
            if self.tail == "right":
                self.imputer_dict_ = (
                    X[self.variables_].quantile(0.75) + (IQR * self.fold)
                ).to_dict()
            elif self.tail == "left":
                self.imputer_dict_ = (
                    X[self.variables_].quantile(0.25) - (IQR * self.fold)
                ).to_dict()
        self.n_features_in_ = X.shape[1]
        return self 
    # Ugly work around to import the docstring for Sphinx, otherwise not necessary
    transform.__doc__ = BaseImputer.transform.__doc__