Source code for feature_engine.imputation.categorical

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd

from feature_engine.dataframe_checks import _is_dataframe
from feature_engine.imputation.base_imputer import BaseImputer
from feature_engine.variable_manipulation import (
    _check_input_parameter_variables,
    _find_all_variables,
    _find_or_check_categorical_variables,
)


[docs]class CategoricalImputer(BaseImputer): """ The CategoricalImputer() replaces missing data in categorical variables by an arbitrary value or by the most frequent category. The CategoricalVariableImputer() imputes by default only categorical variables (type 'object' or 'categorical'). You can pass a list of variables to impute, or alternatively, the encoder will find and encode all categorical variables. If you want to impute numerical variables with this transformer, there are 2 ways of doing it: **Option 1**: Cast your numerical variables as object in the input dataframe, before passing it to the transformer. **Option 2**: Set `ignore_format=True`. Note that if you do this and do not pass the list of variables to impute, the imputer will automatically select and impute all variables in the dataframe. Parameters ---------- imputation_method: str, default='missing' Desired method of imputation. Can be 'frequent' for frequent category imputation or 'missing' to impute with an arbitrary value. fill_value: str, int, float, default='Missing' Only used when `imputation_method='missing'`. User-defined value to replace the missing data. variables: list, default=None The list of categorical variables that will be imputed. If None, the imputer will find and transform all variables of type object or categorical by default. You can also make the transformer accept numerical variables, see the parameter ignore_format below. return_object: bool, default=False If working with numerical variables cast as object, decide whether to return the variables as numeric or re-cast them as object. Note that pandas will re-cast them automatically as numeric after the transformation with the mode or with an arbitrary number. ignore_format: bool, default=False Whether the format in which the categorical variables are cast should be ignored. If false, the encoder will automatically select variables of type object or categorical, or check that the variables entered by the user are of type object or categorical. If True, the encoder will select all variables or accept all variables entered by the user, including those cast as numeric. Attributes ---------- imputer_dict_: Dictionary with most frequent category or arbitrary value per variable. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Learn the most frequent category, or assign arbitrary value to variable. transform: Impute missing data. fit_transform: Fit to the data, than transform it. """ def __init__( self, imputation_method: str = "missing", fill_value: Union[str, int, float] = "Missing", variables: Union[None, int, str, List[Union[str, int]]] = None, return_object: bool = False, ignore_format: bool = False, ) -> None: if imputation_method not in ["missing", "frequent"]: raise ValueError( "imputation_method takes only values 'missing' or 'frequent'" ) if not isinstance(ignore_format, bool): raise ValueError("ignore_format takes only booleans True and False") self.imputation_method = imputation_method self.fill_value = fill_value self.variables = _check_input_parameter_variables(variables) self.return_object = return_object self.ignore_format = ignore_format
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the most frequent category if the imputation method is set to frequent. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. y: pandas Series, default=None y is not needed in this imputation. You can pass None or y. Raises ------ TypeError - If the input is not a Pandas DataFrame. - If user enters non-categorical variables (unless ignore_format is True) ValueError If there are no categorical variables in the df or the df is empty Returns ------- self """ # check input dataframe X = _is_dataframe(X) # check or select the the right variables if not self.ignore_format: # find categorical variables or check variables entered by user are # categorical self.variables_: List[ Union[str, int] ] = _find_or_check_categorical_variables(X, self.variables) else: # select all variables or check variables entered by the user self.variables_ = _find_all_variables(X, self.variables) if self.imputation_method == "missing": self.imputer_dict_ = {var: self.fill_value for var in self.variables_} elif self.imputation_method == "frequent": self.imputer_dict_ = {} for var in self.variables_: mode_vals = X[var].mode() # careful: some variables contain multiple modes if len(mode_vals) == 1: self.imputer_dict_[var] = mode_vals[0] else: raise ValueError( "Variable {} contains multiple frequent categories.".format(var) ) self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: X = self._check_transform_input_and_state(X) # replaces missing data with the learned parameters if self.imputation_method == "frequent": for variable in self.imputer_dict_: X[variable].fillna(self.imputer_dict_[variable], inplace=True) else: for variable in self.imputer_dict_: if pd.api.types.is_categorical_dtype(X[variable]): # if variable is of type category, we first need to add the new # category, and then fill in the nan X[variable].cat.add_categories( self.imputer_dict_[variable], inplace=True ) X[variable].fillna(self.imputer_dict_[variable], inplace=True) # add additional step to return variables cast as object if self.return_object: X[self.variables_] = X[self.variables_].astype("O") return X
# Ugly work around to import the docstring for Sphinx, otherwise not necessary transform.__doc__ = BaseImputer.transform.__doc__