Source code for feature_engine.encoding.rare_label

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

import warnings
from typing import List, Optional, Union

import numpy as np
import pandas as pd

from feature_engine.encoding.base_encoder import BaseCategoricalTransformer
from feature_engine.variable_manipulation import _check_input_parameter_variables


[docs]class RareLabelEncoder(BaseCategoricalTransformer): """ The RareLabelCategoricalEncoder() groups rare / infrequent categories in a new category called "Rare", or any other name entered by the user. For example in the variable colour, if the percentage of observations for the categories magenta, cyan and burgundy are < 5 %, all those categories will be replaced by the new label "Rare". **Note** Infrequent labels can also be grouped under a user defined name, for example 'Other'. The name to replace infrequent categories is defined with the parameter `replace_with`. The encoder will encode only categorical variables by default (type 'object' or 'categorical'). You can pass a list of variables to encode.Alternatively, the encoder will find and encode all categorical variables (type 'object' or 'categorical'). With `ignore_format=True` you have the option to encode numerical variables as well. The procedure is identical, you can either enter the list of variables to encode, or the transformer will automatically select all variables. The encoder first finds the frequent labels for each variable (fit). The encoder then groups the infrequent labels under the new label 'Rare' or by another user defined string (transform). Parameters ---------- tol: float, default=0.05 The minimum frequency a label should have to be considered frequent. Categories with frequencies lower than tol will be grouped. n_categories: int, default=10 The minimum number of categories a variable should have for the encoder to find frequent labels. If the variable contains less categories, all of them will be considered frequent. max_n_categories: int, default=None The maximum number of categories that should be considered frequent. If None, all categories with frequency above the tolerance (tol) will be considered frequent. If you enter 5, only the 5 most frequent categories will be retained and the rest grouped. replace_with: string, intege or float, default='Rare' The value that will be used to replace infrequent categories. variables: list, default=None The list of categorical variables that will be encoded. If None, the encoder will find and transform all variables of type object or categorical by default. You can also make the transformer accept numerical variables, see the next parameter. ignore_format: bool, default=False Whether the format in which the categorical variables are cast should be ignored. If false, the encoder will automatically select variables of type object or categorical, or check that the variables entered by the user are of type object or categorical. If True, the encoder will select all variables or accept all variables entered by the user, including those cast as numeric. Attributes ---------- encoder_dict_: Dictionary with the frequent categories, i.e., those that will be kept, per variable. variables_: The variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Find frequent categories. transform: Group rare categories fit_transform: Fit to data, then transform it. """ def __init__( self, tol: float = 0.05, n_categories: int = 10, max_n_categories: Optional[int] = None, replace_with: Union[str, int, float] = "Rare", variables: Union[None, int, str, List[Union[str, int]]] = None, ignore_format: bool = False, ) -> None: if tol < 0 or tol > 1: raise ValueError("tol takes values between 0 and 1") if n_categories < 0 or not isinstance(n_categories, int): raise ValueError("n_categories takes only positive integer numbers") if max_n_categories is not None: if max_n_categories < 0 or not isinstance(max_n_categories, int): raise ValueError("max_n_categories takes only positive integer numbers") if not isinstance(ignore_format, bool): raise ValueError("ignore_format takes only booleans True and False") self.tol = tol self.n_categories = n_categories self.max_n_categories = max_n_categories self.replace_with = replace_with self.variables = _check_input_parameter_variables(variables) self.ignore_format = ignore_format
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the frequent categories for each variable. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training input samples. Can be the entire dataframe, not just selected variables y: None y is not required. You can pass y or None. Raises ------ TypeError - If the input is not a Pandas DataFrame. - If user enters non-categorical variables (unless ignore_format is True) ValueError - If there are no categorical variables in the df or the df is empty - If the variable(s) contain null values Warning If the number of categories in any one variable is less than the indicated in `n_categories`. Returns ------- self """ X = self._check_fit_input_and_variables(X) self.encoder_dict_ = {} for var in self.variables_: if len(X[var].unique()) > self.n_categories: # if the variable has more than the indicated number of categories # the encoder will learn the most frequent categories t = pd.Series(X[var].value_counts() / float(len(X))) # non-rare labels: freq_idx = t[t >= self.tol].index if self.max_n_categories: self.encoder_dict_[var] = freq_idx[: self.max_n_categories] else: self.encoder_dict_[var] = freq_idx else: # if the total number of categories is smaller than the indicated # the encoder will consider all categories as frequent. warnings.warn( "The number of unique categories for variable {} is less than that " "indicated in n_categories. Thus, all categories will be " "considered frequent".format(var) ) self.encoder_dict_[var] = X[var].unique() self._check_encoding_dictionary() self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Group infrequent categories. Replace infrequent categories by the string 'Rare' or any other name provided by the user. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The input samples. Raises ------ TypeError If the input is not a Pandas DataFrame ValueError - If the variable(s) contain null values - If user enters non-categorical variables (unless ignore_format is True) Returns ------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe where rare categories have been grouped. """ X = self._check_transform_input_and_state(X) for feature in self.variables_: X[feature] = np.where( X[feature].isin(self.encoder_dict_[feature]), X[feature], self.replace_with, ) return X
[docs] def inverse_transform(self, X: pd.DataFrame): """inverse_transform is not implemented for this transformer yet.""" return self