Source code for feature_engine.discretisation.arbitrary

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import Dict, List, Optional, Union

import pandas as pd

from feature_engine.base_transformers import BaseNumericalTransformer
from feature_engine.validation import _return_tags


[docs]class ArbitraryDiscretiser(BaseNumericalTransformer): """ The ArbitraryDiscretiser() divides continuous numerical variables into contiguous intervals which limits are determined arbitrarily by the user. You need to enter a dictionary with variable names as keys, and a list of the limits of the intervals as values. For example `{'var1':[0, 10, 100, 1000], 'var2':[5, 10, 15, 20]}`. ArbitraryDiscretiser() will then sort var1 values into the intervals 0-10, 10-100 100-1000, and var2 into 5-10, 10-15 and 15-20. Similar to `pandas.cut`. The ArbitraryDiscretiser() works only with numerical variables. The discretiser will check if the dictionary entered by the user contains variables present in the training set, and if these variables are numerical, before doing any transformation. Then it transforms the variables, that is, it sorts the values into the intervals. Parameters ---------- binning_dict: dict The dictionary with the variable to interval limits pairs. A valid dictionary looks like this: `binning_dict = {'var1':[0, 10, 100, 1000], 'var2':[5, 10, 15, 20]}` return_object: bool, default=False Whether the the discrete variable should be returned casted as numeric or as object. If you would like to proceed with the engineering of the variable as if it was categorical, use True. Alternatively, keep the default to False. Categorical encoders in Feature-engine work only with variables of type object, thus, if you wish to encode the returned bins, set return_object to True. return_boundaries: bool, default=False Whether the output, that is the bin names / values, should be the interval boundaries. If True, it returns the interval boundaries. If False, it returns integers. Attributes ---------- binner_dict_: Dictionary with the interval limits per variable. variables_: The variables to discretise. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: This transformer does not learn any parameter. transform: Sort continuous variable values into the intervals. fit_transform: Fit to the data, then transform it. See Also -------- pandas.cut: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html """ def __init__( self, binning_dict: Dict[Union[str, int], List[Union[str, int]]], return_object: bool = False, return_boundaries: bool = False, ) -> None: if not isinstance(binning_dict, dict): raise ValueError( "Please provide at a dictionary with the interval limits per variable" ) if not isinstance(return_object, bool): raise ValueError("return_object must be True or False") self.binning_dict = binning_dict self.return_object = return_object self.return_boundaries = return_boundaries
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ This transformer does not learn any parameter. Check dataframe and variables. Checks that the user entered variables are in the train set and cast as numerical. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. Can be the entire dataframe, not just the variables to be transformed. y: None y is not needed in this transformer. You can pass y or None. Raises ------ TypeError - If the input is not a Pandas DataFrame - If any of the user provided variables are not numerical ValueError - If there are no numerical variables in the df or the df is empty - If the variable(s) contain null values Returns ------- self """ # check input dataframe X = super()._select_variables_from_dict(X, self.binning_dict) # for consistency wit the rest of the discretisers, we add this attribute self.binner_dict_ = self.binning_dict self.n_features_in_ = X.shape[1] return self
[docs] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """Sort the variable values into the intervals. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe to be transformed. Raises ------ TypeError If the input is not a Pandas DataFrame ValueError - If the variable(s) contain null values - If the dataframe is not of the same size as the one used in fit() Returns ------- X: pandas dataframe of shape = [n_samples, n_features] The transformed data with the discrete variables. """ # check input dataframe and if class was fitted X = super().transform(X) # transform variables if self.return_boundaries: for feature in self.variables_: X[feature] = pd.cut(X[feature], self.binner_dict_[feature]) else: for feature in self.variables_: X[feature] = pd.cut( X[feature], self.binner_dict_[feature], labels=False ) # return object if self.return_object: X[self.variables_] = X[self.variables_].astype("O") return X
def _more_tags(self): tags_dict = _return_tags() # add additional test that fails tags_dict["_xfail_checks"][ "check_parameters_default_constructible" ] = "transformer has 1 mandatory parameter" return tags_dict