"""Target Encoder"""
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from category_encoders.ordinal import OrdinalEncoder
import category_encoders.utils as util
__author__ = 'chappers'
[docs]class TargetEncoder(BaseEstimator, util.TransformerWithTargetMixin):
    """Target encoding for categorical features.
    Supported targets: binomial and continuous. For polynomial target support, see PolynomialWrapper.
    For the case of categorical target: features are replaced with a blend of posterior probability of the target
    given particular categorical value and the prior probability of the target over all the training data.
    For the case of continuous target: features are replaced with a blend of the expected value of the target
    given particular categorical value and the expected value of the target over all the training data.
    Parameters
    ----------
    verbose: int
        integer indicating verbosity of the output. 0 for none.
    cols: list
        a list of columns to encode, if None, all string columns will be encoded.
    drop_invariant: bool
        boolean for whether or not to drop columns with 0 variance.
    return_df: bool
        boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
    handle_missing: str
        options are 'error', 'return_nan'  and 'value', defaults to 'value', which returns the target mean.
    handle_unknown: str
        options are 'error', 'return_nan' and 'value', defaults to 'value', which returns the target mean.
    min_samples_leaf: int
        minimum samples to take category average into account.
    smoothing: float
        smoothing effect to balance categorical average vs prior. Higher value means stronger regularization.
        The value must be strictly bigger than 0.
    Example
    -------
    >>> from category_encoders import *
    >>> import pandas as pd
    >>> from sklearn.datasets import load_boston
    >>> bunch = load_boston()
    >>> y = bunch.target
    >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
    >>> enc = TargetEncoder(cols=['CHAS', 'RAD']).fit(X, y)
    >>> numeric_dataset = enc.transform(X)
    >>> print(numeric_dataset.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 506 entries, 0 to 505
    Data columns (total 13 columns):
    CRIM       506 non-null float64
    ZN         506 non-null float64
    INDUS      506 non-null float64
    CHAS       506 non-null float64
    NOX        506 non-null float64
    RM         506 non-null float64
    AGE        506 non-null float64
    DIS        506 non-null float64
    RAD        506 non-null float64
    TAX        506 non-null float64
    PTRATIO    506 non-null float64
    B          506 non-null float64
    LSTAT      506 non-null float64
    dtypes: float64(13)
    memory usage: 51.5 KB
    None
    References
    ----------
    .. [1] A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems, from
    https://dl.acm.org/citation.cfm?id=507538
    """
    def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_missing='value',
                     handle_unknown='value', min_samples_leaf=1, smoothing=1.0):
        self.return_df = return_df
        self.drop_invariant = drop_invariant
        self.drop_cols = []
        self.verbose = verbose
        self.cols = cols
        self.ordinal_encoder = None
        self.min_samples_leaf = min_samples_leaf
        self.smoothing = float(smoothing)  # Make smoothing a float so that python 2 does not treat as integer division
        self._dim = None
        self.mapping = None
        self.handle_unknown = handle_unknown
        self.handle_missing = handle_missing
        self._mean = None
        self.feature_names = None
[docs]    def fit(self, X, y, **kwargs):
        """Fit encoder according to X and y.
        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        Returns
        -------
        self : encoder
            Returns self.
        """
        # unite the input into pandas types
        X = util.convert_input(X)
        y = util.convert_input_vector(y, X.index)
        if X.shape[0] != y.shape[0]:
            raise ValueError("The length of X is " + str(X.shape[0]) + " but length of y is " + str(y.shape[0]) + ".")
        self._dim = X.shape[1]
        # if columns aren't passed, just use every string column
        if self.cols is None:
            self.cols = util.get_obj_cols(X)
        else:
            self.cols = util.convert_cols_to_list(self.cols)
        if self.handle_missing == 'error':
            if X[self.cols].isnull().any().any():
                raise ValueError('Columns to be encoded can not contain null')
        self.ordinal_encoder = OrdinalEncoder(
            verbose=self.verbose,
            cols=self.cols,
            handle_unknown='value',
            handle_missing='value'
        )
        self.ordinal_encoder = self.ordinal_encoder.fit(X)
        X_ordinal = self.ordinal_encoder.transform(X)
        self.mapping = self.fit_target_encoding(X_ordinal, y)
        
        X_temp = self.transform(X, override_return_df=True)
        self.feature_names = list(X_temp.columns)
        if self.drop_invariant:
            self.drop_cols = []
            X_temp = self.transform(X)
            generated_cols = util.get_generated_cols(X, X_temp, self.cols)
            self.drop_cols = [x for x in generated_cols if X_temp[x].var() <= 10e-5]
            try:
                [self.feature_names.remove(x) for x in self.drop_cols]
            except KeyError as e:
                if self.verbose > 0:
                    print("Could not remove column from feature names."
                    "Not found in generated cols.\n{}".format(e))
        return self 
[docs]    def fit_target_encoding(self, X, y):
        mapping = {}
        for switch in self.ordinal_encoder.category_mapping:
            col = switch.get('col')
            values = switch.get('mapping')
            prior = self._mean = y.mean()
            stats = y.groupby(X[col]).agg(['count', 'mean'])
            smoove = 1 / (1 + np.exp(-(stats['count'] - self.min_samples_leaf) / self.smoothing))
            smoothing = prior * (1 - smoove) + stats['mean'] * smoove
            smoothing[stats['count'] == 1] = prior
            if self.handle_unknown == 'return_nan':
                smoothing.loc[-1] = np.nan
            elif self.handle_unknown == 'value':
                smoothing.loc[-1] = prior
            if self.handle_missing == 'return_nan':
                smoothing.loc[values.loc[np.nan]] = np.nan
            elif self.handle_missing == 'value':
                smoothing.loc[-2] = prior
            mapping[col] = smoothing
        return mapping 
[docs]    def target_encode(self, X_in):
        X = X_in.copy(deep=True)
        for col in self.cols:
            X[col] = X[col].map(self.mapping[col])
        return X 
[docs]    def get_feature_names(self):
        """
        Returns the names of all transformed / added columns.
        Returns
        -------
        feature_names: list
            A list with all feature names transformed or added.
            Note: potentially dropped features are not included!
        """
        if not isinstance(self.feature_names, list):
            raise ValueError('Must fit data first. Affected feature names are not known before.')
        else:
            return self.feature_names