"""CatBoost coding"""
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
import category_encoders.utils as util
from sklearn.utils.random import check_random_state
__author__ = 'Jan Motl'
[docs]class CatBoostEncoder(BaseEstimator, util.TransformerWithTargetMixin):
    """CatBoost coding for categorical features.
    Supported targets: binomial and continuous. For polynomial target support, see PolynomialWrapper.
    This is very similar to leave-one-out encoding, but calculates the
    values "on-the-fly". Consequently, the values naturally vary
    during the training phase and it is not necessary to add random noise.
    Beware, the training data have to be randomly permutated. E.g.:
        # Random permutation
        perm = np.random.permutation(len(X))
        X = X.iloc[perm].reset_index(drop=True)
        y = y.iloc[perm].reset_index(drop=True)
    This is necessary because some data sets are sorted based on the target
    value and this coder encodes the features on-the-fly in a single pass.
    Parameters
    ----------
    verbose: int
        integer indicating verbosity of the output. 0 for none.
    cols: list
        a list of columns to encode, if None, all string columns will be encoded.
    drop_invariant: bool
        boolean for whether or not to drop columns with 0 variance.
    return_df: bool
        boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
    handle_missing: str
        options are 'error', 'return_nan'  and 'value', defaults to 'value', which returns the target mean.
    handle_unknown: str
        options are 'error', 'return_nan' and 'value', defaults to 'value', which returns the target mean.
    sigma: float
        adds normal (Gaussian) distribution noise into training data in order to decrease overfitting (testing data are untouched).
        sigma gives the standard deviation (spread or "width") of the normal distribution.
    a: float
        additive smoothing (it is the same variable as "m" in m-probability estimate). By default set to 1.
    Example
    -------
    >>> from category_encoders import *
    >>> import pandas as pd
    >>> from sklearn.datasets import load_boston
    >>> bunch = load_boston()
    >>> y = bunch.target
    >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
    >>> enc = CatBoostEncoder(cols=['CHAS', 'RAD']).fit(X, y)
    >>> numeric_dataset = enc.transform(X)
    >>> print(numeric_dataset.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 506 entries, 0 to 505
    Data columns (total 13 columns):
    CRIM       506 non-null float64
    ZN         506 non-null float64
    INDUS      506 non-null float64
    CHAS       506 non-null float64
    NOX        506 non-null float64
    RM         506 non-null float64
    AGE        506 non-null float64
    DIS        506 non-null float64
    RAD        506 non-null float64
    TAX        506 non-null float64
    PTRATIO    506 non-null float64
    B          506 non-null float64
    LSTAT      506 non-null float64
    dtypes: float64(13)
    memory usage: 51.5 KB
    None
    References
    ----------
    .. [1] Transforming categorical features to numerical features, from
    https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
    .. [2] CatBoost: unbiased boosting with categorical features, from
    https://arxiv.org/abs/1706.09516
    """
    def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True,
                 handle_unknown='value', handle_missing='value', random_state=None, sigma=None, a=1):
        self.return_df = return_df
        self.drop_invariant = drop_invariant
        self.drop_cols = []
        self.verbose = verbose
        self.use_default_cols = cols is None  # if True, even a repeated call of fit() will select string columns from X
        self.cols = cols
        self._dim = None
        self.mapping = None
        self.handle_unknown = handle_unknown
        self.handle_missing = handle_missing
        self._mean = None
        self.random_state = random_state
        self.sigma = sigma
        self.feature_names = None
        self.a = a
[docs]    def fit(self, X, y, **kwargs):
        """Fit encoder according to X and y.
        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        Returns
        -------
        self : encoder
            Returns self.
        """
        # unite the input into pandas types
        X = util.convert_input(X)
        y = util.convert_input_vector(y, X.index).astype(float)
        if X.shape[0] != y.shape[0]:
            raise ValueError("The length of X is " + str(X.shape[0]) + " but length of y is " + str(y.shape[0]) + ".")
        self._dim = X.shape[1]
        # if columns aren't passed, just use every string column
        if self.use_default_cols:
            self.cols = util.get_obj_cols(X)
        else:
            self.cols = util.convert_cols_to_list(self.cols)
        if self.handle_missing == 'error':
            if X[self.cols].isnull().any().any():
                raise ValueError('Columns to be encoded can not contain null')
        categories = self._fit(
            X, y,
            cols=self.cols
        )
        self.mapping = categories
        X_temp = self.transform(X, y, override_return_df=True)
        self.feature_names = X_temp.columns.tolist()
        if self.drop_invariant:
            self.drop_cols = []
            generated_cols = util.get_generated_cols(X, X_temp, self.cols)
            self.drop_cols = [x for x in generated_cols if X_temp[x].var() <= 10e-5]
            try:
                [self.feature_names.remove(x) for x in self.drop_cols]
            except KeyError as e:
                if self.verbose > 0:
                    print("Could not remove column from feature names."
                          "Not found in generated cols.\n{}".format(e))
        return self 
    def _fit(self, X_in, y, cols=None):
        X = X_in.copy(deep=True)
        if cols is None:
            cols = X.columns.values
        self._mean = y.mean()
        return {col: self._fit_column_map(X[col], y) for col in cols}
    def _fit_column_map(self, series, y):
        category = pd.Categorical(series)
        categories = category.categories
        codes = category.codes.copy()
        codes[codes == -1] = len(categories)
        categories = np.append(categories, np.nan)
        return_map = pd.Series(dict([(code, category) for code, category in enumerate(categories)]))
        result = y.groupby(codes).agg(['sum', 'count'])
        return result.rename(return_map)
    def _transform(self, X_in, y, mapping=None):
        """
        The model uses a single column of floats to represent the means of the target variables.
        """
        X = X_in.copy(deep=True)
        random_state_ = check_random_state(self.random_state)
        # Prepare the data
        if y is not None:
            # Convert bools to numbers (the target must be summable)
            y = y.astype('double')
        for col, colmap in mapping.items():
            level_notunique = colmap['count'] > 1
            unique_train = colmap.index
            unseen_values = pd.Series([x for x in X_in[col].unique() if x not in unique_train], dtype=unique_train.dtype)
            is_nan = X_in[col].isnull()
            is_unknown_value = X_in[col].isin(unseen_values.dropna().astype(object))
            if self.handle_unknown == 'error' and is_unknown_value.any():
                raise ValueError('Columns to be encoded can not contain new values')
            if y is None:    # Replace level with its mean target; if level occurs only once, use global mean
                level_means = ((colmap['sum'] + self._mean) / (colmap['count'] + self.a)).where(level_notunique, self._mean)
                X[col] = X[col].map(level_means)
            else:
                # Simulation of CatBoost implementation, which calculates leave-one-out on the fly.
                # The nice thing about this is that it helps to prevent overfitting. The bad thing
                # is that CatBoost uses many iterations over the data. But we run just one iteration.
                # Still, it works better than leave-one-out without any noise.
                # See:
                #   https://tech.yandex.com/catboost/doc/dg/concepts/algorithm-main-stages_cat-to-numberic-docpage/
                # Cumsum does not work nicely with None (while cumcount does).
                # As a workaround, we cast the grouping column as string.
                # See: issue #209
                temp = y.groupby(X[col].astype(str)).agg(['cumsum', 'cumcount'])
                X[col] = (temp['cumsum'] - y + self._mean) / (temp['cumcount'] + self.a)
            if self.handle_unknown == 'value':
                if X[col].dtype.name == 'category':
                    X[col] = X[col].astype(float)
                X.loc[is_unknown_value, col] = self._mean
            elif self.handle_unknown == 'return_nan':
                X.loc[is_unknown_value, col] = np.nan
            if self.handle_missing == 'value':
                X.loc[is_nan & unseen_values.isnull().any(), col] = self._mean
            elif self.handle_missing == 'return_nan':
                X.loc[is_nan, col] = np.nan
            if self.sigma is not None and y is not None:
                X[col] = X[col] * random_state_.normal(1., self.sigma, X[col].shape[0])
        return X
[docs]    def get_feature_names(self):
        """
        Returns the names of all transformed / added columns.
        Returns
        -------
        feature_names: list
            A list with all feature names transformed or added.
            Note: potentially dropped features are not included!
        """
        if not isinstance(self.feature_names, list):
            raise ValueError('Must fit data first. Affected feature names are not known before.')
        else:
            return self.feature_names