Source code for category_encoders.binary

"""Binary encoding"""

import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin

import category_encoders as ce

__author__ = 'willmcginnis'


[docs]class BinaryEncoder(BaseEstimator, TransformerMixin): """Binary encoding for categorical variables, similar to onehot, but stores categories as binary bitstrings. Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). handle_unknown: str options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used, an extra column will be added in if the transform matrix has unknown categories. This can cause unexpected changes in dimension in some cases. handle_missing: str options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used, an extra column will be added in if the transform matrix has nan values. This can cause unexpected changes in dimension in some cases. Example ------- >>> from category_encoders import * >>> import pandas as pd >>> from sklearn.datasets import load_boston >>> bunch = load_boston() >>> y = bunch.target >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names) >>> enc = BinaryEncoder(cols=['CHAS', 'RAD']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 18 columns): CRIM 506 non-null float64 ZN 506 non-null float64 INDUS 506 non-null float64 CHAS_0 506 non-null int64 CHAS_1 506 non-null int64 NOX 506 non-null float64 RM 506 non-null float64 AGE 506 non-null float64 DIS 506 non-null float64 RAD_0 506 non-null int64 RAD_1 506 non-null int64 RAD_2 506 non-null int64 RAD_3 506 non-null int64 RAD_4 506 non-null int64 TAX 506 non-null float64 PTRATIO 506 non-null float64 B 506 non-null float64 LSTAT 506 non-null float64 dtypes: float64(11), int64(7) memory usage: 71.3 KB None """ def __init__(self, verbose=0, cols=None, mapping=None, drop_invariant=False, return_df=True, handle_unknown='value', handle_missing='value'): self.verbose = verbose self.cols = cols self.mapping = mapping self.drop_invariant = drop_invariant self.return_df = return_df self.handle_unknown = handle_unknown self.handle_missing = handle_missing self.base_n_encoder = ce.BaseNEncoder(base=2, verbose=self.verbose, cols=self.cols, mapping=self.mapping, drop_invariant=self.drop_invariant, return_df=self.return_df, handle_unknown=self.handle_unknown, handle_missing=self.handle_missing)
[docs] def fit(self, X, y=None, **kwargs): """Fit encoder according to X and y. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : encoder Returns self. """ self.base_n_encoder.fit(X, y, **kwargs) return self
[docs] def transform(self, X, override_return_df=False): """Perform the transformation to new categorical data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- p : array, shape = [n_samples, n_numeric + N] Transformed values with encoding applied. """ return self.base_n_encoder.transform(X)
[docs] def inverse_transform(self, X_in): """ Perform the inverse transformation to encoded data. Parameters ---------- X_in : array-like, shape = [n_samples, n_features] Returns ------- p: array, the same size of X_in """ return self.base_n_encoder.inverse_transform(X_in)
[docs] def get_feature_names(self): """ Returns the names of all transformed / added columns. Returns ------- feature_names: list A list with all feature names transformed or added. Note: potentially dropped features are not included! """ return self.base_n_encoder.get_feature_names()