"""Binary encoding"""
import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
import category_encoders as ce
__author__ = 'willmcginnis'
[docs]class BinaryEncoder(BaseEstimator, TransformerMixin):
    """Binary encoding for categorical variables, similar to onehot, but stores categories as binary bitstrings.
    Parameters
    ----------
    verbose: int
        integer indicating verbosity of the output. 0 for none.
    cols: list
        a list of columns to encode, if None, all string columns will be encoded.
    drop_invariant: bool
        boolean for whether or not to drop columns with 0 variance.
    return_df: bool
        boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
    handle_unknown: str
        options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used,
        an extra column will be added in if the transform matrix has unknown categories.  This can cause
        unexpected changes in dimension in some cases.
    handle_missing: str
        options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used,
        an extra column will be added in if the transform matrix has nan values.  This can cause
        unexpected changes in dimension in some cases.
    Example
    -------
    >>> from category_encoders import *
    >>> import pandas as pd
    >>> from sklearn.datasets import load_boston
    >>> bunch = load_boston()
    >>> y = bunch.target
    >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
    >>> enc = BinaryEncoder(cols=['CHAS', 'RAD']).fit(X, y)
    >>> numeric_dataset = enc.transform(X)
    >>> print(numeric_dataset.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 506 entries, 0 to 505
    Data columns (total 18 columns):
    CRIM       506 non-null float64
    ZN         506 non-null float64
    INDUS      506 non-null float64
    CHAS_0     506 non-null int64
    CHAS_1     506 non-null int64
    NOX        506 non-null float64
    RM         506 non-null float64
    AGE        506 non-null float64
    DIS        506 non-null float64
    RAD_0      506 non-null int64
    RAD_1      506 non-null int64
    RAD_2      506 non-null int64
    RAD_3      506 non-null int64
    RAD_4      506 non-null int64
    TAX        506 non-null float64
    PTRATIO    506 non-null float64
    B          506 non-null float64
    LSTAT      506 non-null float64
    dtypes: float64(11), int64(7)
    memory usage: 71.3 KB
    None
    """
    def __init__(self, verbose=0, cols=None, mapping=None, drop_invariant=False, return_df=True,
                 handle_unknown='value', handle_missing='value'):
        self.verbose = verbose
        self.cols = cols
        self.mapping = mapping
        self.drop_invariant = drop_invariant
        self.return_df = return_df
        self.handle_unknown = handle_unknown
        self.handle_missing = handle_missing
        self.base_n_encoder = ce.BaseNEncoder(base=2, verbose=self.verbose, cols=self.cols, mapping=self.mapping,
                                              drop_invariant=self.drop_invariant, return_df=self.return_df,
                                              handle_unknown=self.handle_unknown, handle_missing=self.handle_missing)
[docs]    def fit(self, X, y=None, **kwargs):
        """Fit encoder according to X and y.
        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        Returns
        -------
        self : encoder
            Returns self.
        """
        self.base_n_encoder.fit(X, y, **kwargs)
        return self 
[docs]    def get_feature_names(self):
        """
        Returns the names of all transformed / added columns.
        Returns
        -------
        feature_names: list
            A list with all feature names transformed or added.
            Note: potentially dropped features are not included!
        """
        return self.base_n_encoder.get_feature_names()